Схемы подключения литиевых аккумуляторов

Содержание:

Какие диски купить для Лада Веста?

Особенности последовательного соединения АКБ

Последовательное соединение АКБ – задача не такая уж сложная. К плюсу электрической схемы подсоединяем плюс первой батареи, к минусу первой батареи подключаем плюс второй, и так далее. Минус последней подключается к минусу электросхемы. Перед тем как последовательно соединить аккумуляторы, убедитесь в том, что они одинаковы по параметрам.

Формулы (U – напряжение, I – ток, C – емкость, E – электрическая энергия):

Uобщ = U1 + U2 + U3 + Ui

Iобщ = I1 = I2 = I3 = Ii

C = const

Eобщ = ∑ Ei

Емкость системы

Емкость АКБ при последовательном соединении будет равна емкости одного элемента, а напряжение элементов будет суммироваться. Например, на схеме показано, как подключить аккумуляторы последовательно. В таком случае напряжение батареи вырастет в 4 раза (12*4 = 48 В), а емкость останется равной 200 Ач.

Для чего используется

Разные устройства имеют различные диапазоны напряжений. В то же время, рабочее напряжение электроаккумуляторов варьируется от 0,5 до 48 В. Если нужен автономный источник энергии для приборов, электроприводной техники, стартеров автомобилей, для него создается повышенное рабочее напряжение. Делается это как раз с помощью последовательного соединения аккумуляторных батарей.

Самый простой пример такого соединения – карманный фанарик. Чем ниже напряжение в фонарике, тем более тускло горит лампочка. А наиболее часто такая система используется в автомобильных свинцово-кислотных АКБ. Отдельные элементы в них называются банками и объединены в общем корпусе свинцовыми шинами. В беспроводных инструментах и электровелосипедах используются литий-ионные аккумуляторы.

Принципы работы химического источника питания

Источники питания, основанные на химических процессах, бывают первичными и вторичными. Первичные источники состоят из твердых электродов и соединяющих их химически и электрически электролитов — жидких или твердых составов. Комплекс реакций всего агрегата действует так, что заложенное в нем химическое неравновесие разряжается, приводя к некоему балансу компонентов. Выделяющаяся при этом энергия в виде заряженных частиц выходит наружу и на клеммах создает электрическое напряжение. Пока оттока заряженных частиц наружу нет, электрическое поле замедляет химические реакции внутри источника. При соединении клемм источника с какой-нибудь электрической нагрузкой по цепи побежит ток, а химические реакции возобновятся с новой силой, снова поставляя электрическое напряжение на клеммы. Таким образом, напряжение на источнике остается неизменным, медленно уменьшающимся, пока в нем продолжает оставаться химическое неравновесие. Это можно наблюдать по медленному постепенному уменьшению напряжения на клеммах.

Такое явление называется разрядка химического источника электроэнергии. Первоначально обнаружили такой комплекс реакции с двумя разными металлами (медь и цинк) и кислотой. При этом металлы в процессе разрядки подвергаются разрушению. Но потом подобрали такие компоненты и такое их взаимодействие, что если после уменьшения напряжения на клеммах в результате разрядки поддерживать его там искусственно, то через источник обратно потечет электрический ток, и химические реакции способны повернуть вспять, снова создавая в комплексе прежнее неравновесное состояние.

Источники первого типа, в которых компоненты безвозвратно разрушаются, называются первичными, или гальваническими элементами, по имени открывателя таких процессов Луиджи Гальвани. Источники второго рода, способные под действием внешнего напряжения, повернув вспять весь механизм химических реакций, снова вернуться к неравновесному состоянию внутри источника, называются источниками второго рода, или электрическими аккумуляторами. От слова «аккумулировать» — сгущать, собирать. И их главная особенность, только что описанная, называется зарядка.

Однако у аккумуляторов все не так просто.

Таких химических механизмов было найдено несколько. С разными участвующими в них веществами. Поэтому и типов аккумуляторов несколько. И они по-разному себя ведут, заряжаются и разряжаются. А в некоторых случаях возникают явления, которые очень хорошо знать людям, имеющим с ними дело.

А с ними имеют дело практически все. Аккумуляторы, как автономные источники энергии, применяются повсюду, в самых разных устройствах. От маленьких наручных часов до транспортных средств разного размера: автомобилей, троллейбусов, тепловозов, теплоходов.

Используемое топливо

Источник питания на примере гидравлики

Давайте рассмотрим водобашню, в которой есть автоматическая подача воды. То есть сколько бы мы не потребляли воды из башни, ее уровень воды будет неизменным.

Схематически это будет выглядеть вот так:

Башню с автоматической подачей воды можно считать источником питания. В химических же источниках питания происходит разряд, что ведет к тому, что уровень напряжения понижается при длительной работе. А что такое напряжение по аналогии с гидравликой? Это тот же самый уровень воды)

Давайте отпилим у водобашни верхнюю часть для наглядности. У нас получится цилиндр, который заполнен водой. Возьмем за точку отсчета уровень земли. Пусть он у нас будет равняться нулю.

Теперь вопрос на засыпку. В каком случае давление на дно будет больше? Когда в башне немного воды

либо когда башня полностью залита водой так, что даже вода выходит за ее края

Разумеется, когда башня наполнена только наполовину водой, на дне башни давление меньше, чем тогда, когда в башне воды под завязку.

Думаю, не надо объяснять, что если в башне вообще нет воды, то никакого давления на дне башни не будет.

По тому же самому принципу работает батарейка или аккумулятор

На электрических схемах ее обозначение выглядит примерно вот так:

Также, чтобы получить необходимое напряжение, одноэлементные источники питания соединяют последовательно. На схеме это выглядит вот так:

Любой аккумулятор или источник постоянного тока имеет два полюса: “плюс” и “минус”. Минус – это уровень земли, как в нашем примере с водобашней, а плюс – это напряжение, по аналогии с гидравликой это и будет тот самый уровень воды.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:

Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.


Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Варианты подключения аккумуляторов

Существует три схемы соединений АКБ в сборки с нужными параметрами:

  1. Последовательное — складывается напряжение всех АКБ;
  2. Параллельное – складывается емкость;
  3. Комбинированное последовательно-параллельное – для повышения емкости и напряжения.

Все они имеют определенные особенности, которые необходимо знать для обеспечения безопасности и долговременной эксплуатации аккумуляторов и питаемых ими устройств.

Основным требованием при всех способах коммутации является исключение использования в сборке аккумуляторов, изготовленных по разным технологиям (например, нельзя соединять одновременно Li-ion и Ni-Mh).

Последовательное соединение аккумуляторов

Для обеспечения достаточного напряжения и приемлемого времени работы электроприборов часто используют аккумуляторные батареи, у которых аноды и катоды отдельных элементов (секций) последовательно соединяются между собой проводниками.

Анод и катод крайних источников питания получившейся сборной батареи являются ее общими плюсом и минусом. У АКБ из последовательно соединенных элементов результирующее напряжение равно сумме вольтажей использующихся источников тока. Результирующая емкость полученной батареи равна той, которую имеет самый слабый из присоединенных АКБ. При эксплуатации такой сборки через каждый элемент течет одинаковый ток (как при заряде, так и при разряде).

Если в сборке будут использоваться элементы с разной емкостью, то у тех из них, которые имеют меньшую емкость, будет более высокое внутренне сопротивление по сравнению с другими. Падение напряжения на них будет больше, что приведет к быстрому разряду самого слабого элемента в процессе работы.

Более мощные аккумуляторы сборки при этом еще будут работоспособны и сборка будет эксплуатироваться дальше. Это приведет к сильному разряду самого слабого аккумулятора, что уменьшит его ресурс и емкость.

С этим читают

Последовательное соединение аккумуляторов

При последовательном коммутировании источников питания положительный вывод соединяется с общим контактом, а отрицательный с положительным выводом следующего аккумулятора и так далее в зависимости сколько элементов в батарее.

АКБ одинаковой емкости

В результате коммутации одинаковых источников питания увеличивается напряжение при постоянном токе, как при заряде, так и при разряде. Заряд при последовательном подключении будет иметь постоянное значение.

АКБ разной емкости

Часто возникает необходимость применить в батарее элементы с различным значением внутреннего заряда. При этом стоит помнить, что у источника питания с меньшим значением будет самое высокое внутреннее сопротивление, в результате на этом элементе падение напряжения будет увеличиваться, что приведет к быстрому разряду. Однако мощные элементы будут при этом продолжать функционировать, поддерживая всю батарею в рабочем состоянии. Такой фактор приведет к снижению заряда слабой батареи до минимально допустимого значения.

Во время восстановления заряда слабый аккумулятор восстановиться быстрее остальных, хотя другие еще будут заряжаться. В результате такой ситуации может возникнуть перезаряд элемента с пониженной емкостью, что приведет к его нагреву.

Класс S

Параллельное и последовательное соединение

Последовательное соединение двух аккумуляторов. Емкость батареи остается без изменений, выходное напряжение увеличивается в два раза

Если вы используете больше одного аккумулятора, то через батарейные переключатели их можно подключить к цепи независимо, но можно соединить последовательно или параллельно.

При последовательном соединении положительную клемму одного аккумулятора соединяют с отрицательной клеммой другого, а нагрузку подключают к свободным положительной и отрицательным клеммам. Общая емкость последовательно соединенных аккумуляторов не меняется, а выходное напряжение увеличивается. Например, емкость батареи, состоящей из двух последовательно соединенных 12-вольтовых аккумуляторов по 100 Ач каждый, останется 100 Ач, а напряжение увеличится до 24 Вольт.

Параллельное соединение двух аккумуляторов. Напряжение на выходе батареи не меняется емкость увеличивается в два раза

При параллельном соединении, положительную клемму одного аккумулятора соединяют с положительной клеммой другого, затем соединяют между собой отрицательные клеммы и подключают к нагрузке. Напряжение батареи параллельно соединенных аккумуляторов не меняется, а емкость равняется сумме емкостей соединенных аккумуляторов.

Последовательно-параллельное соединение используют когда необходимо создать аккумуляторную батарею большой емкости, но вес каждого аккумулятора слишком велик. В 12-вольтовых электрических системах сначала  соединяют последовательно два 6-вольтовых аккумулятора и получают 12 вольт. Затем полученную батарею подключают параллельно к еще двум,  соединенным таким же образом 6-вольтовым аккумуляторам. Первое соединение увеличивает напряжение, а второе емкость аккумуляторной батареи.

Последовательно-параллельное соединение аккумуляторов. Два 6-вольтовых аккумулятора соединены последовательно и подключены к еще двум таким же аккумуляторам. Емкость этой батареи будет такой же как у двух параллельно соединенных 12-вольтовых аккумуляторов. Однако 6-вольтовые аккумуляторы большой емкости, легче 12-вольтовых, поэтому их проще устанавливать, менять и обслуживать.

Считается, что при параллельном подключении вышедшая из строя аккумуляторная ячейка может разряжать другие аккумуляторы, а небольшие токи, циркулирующие между аккумуляторами увеличивают уровень саморазряда. Из-за этого 12-вольтовую батарею иногда рекомендуют создавать из последовательно соединенные 6-вольтовых аккумуляторов большой емкости. А если они оказываются слишком тяжелыми, то использовать шесть последовательно соединенных 2-вольтовых аккумуляторов.

Однако при параллельном подключении отказ одной ячейки не ведет к выходу из строя всей батареи. Оборудование контроля позволяет обнаружить неисправный аккумулятор и удалить его. Емкость батареи уменьшится, но аккумуляторы продолжат работать.

Но если ячейка выходит из строя в последовательно соединенной батарее, то после удаления неисправного аккумулятора, напряжение в системе упадает на 6 или 2 вольта (в зависимости от того, из каких аккумуляторов собрана батарея).

Как заряжать аккумулятор 18650 с защитой: важные правила

Чтобы защищенные Li-ion аккумуляторы типоразмера 18650 дольше сохраняли свою работоспособность, нужно:

  1. Заряжать их подходящими зарядными устройствами (в идеале – оригинальными) – источниками постоянного напряжения 5 В, которые отдают зарядный ток величиной от 0,5 до 1,0 емкости элемента питания, автоматически начинают процесс зарядки от 0,05 В и останавливают его при 4,2 В.
  2. Производить зарядку в помещениях при температуре от +15 до +25 °С. После попадания в помещение с мороза аккумулятор нужно вначале выдержать при комнатной температуре и только через несколько часов заряжать.
  3. Хранить с уровнем заряда порядка 40–50%, периодически проверяя его.

Ищем другие способы включения батарей

Комбинированный метод

В некоторых случаях нужно одновременно увеличить емкость и напряжение АКБ. Для этого применяется два комбинированных метода соединения:

  1. Для начала проводится последовательное соединение нескольких батарей. Подобным образом достигается требуемое рабочее напряжение. На втором этапе проводится параллельное коммутирование нескольких батарей, полученных при последовательном соединении аккумуляторов. Проводится создание нескольких последовательных цепей для достижения требуемой емкости.
  2. Второй метод предусматривает параллельную коммутацию аккумуляторов с требующейся емкостью, после чего они соединяются последовательно для достижения требуемого тока.

Комбинированный метод применяется крайне редко, так как предусматривает использование нескольких источников питания

При выборе наиболее подходящих аккумуляторов уделяется внимание их техническому состоянию, емкости и напряжению генерируемого тока

Упражнение N 8 «Проезд регулируемого перекрестка» (для автоматизированных автодромов)

21. Кандидат в водители:

— проезжает регулируемый перекресток согласно схеме организации движения автоматизированного автодрома, соблюдая требования сигналов светофора (рисунок 13);

— при включении запрещающего сигнала светофора останавливает транспортное средство перед линией «СТОП»;

— при включении разрешающего сигнала светофора проезжает перекресток в заданном направлении.

В зависимости от схемы организации движения, применяемой на автоматизированном автодроме, для выполнения упражнения может применяться Т-образный перекресток.

Увеличить

Рисунок 13. Схема и размеры упражнения N 8

Как правильно подключить радиатор в помещении?

Для обеспечения комфортной атмосферы в комнате необходимо не только правильно подобрать батарею и установить ее

Важно при этом учитывать особенности обустройства отопления всего здания

Как подключить радиаторы отопления в частном доме

Качественно обустроенная система важна для обогрева как большого коттеджа, так и компактного строения. Причем желательно, чтобы отопление создавало комфортную атмосферу в холодное время года и не было самой большой статьей расхода бюджета.

Подключить радиаторы отопления можно двумя способами. Оба вида разводки (однотрубная и двухтрубная) имеют свои достоинства и недостатки.

В двухтрубной конструкции используются разные ветки для подачи на радиатор горячего теплоносителя и движения холодного. При оснащении частного дома монтируется горизонтальная система, которая обладает рядом достоинств:

  • во всех радиаторах теплоноситель имеет одинаковую температуру;
  • каждую линию можно оснастить терморегулятором;
  • легкая разводка труб позволяет установить систему в строении любой площади и планировки;
  • хорошая энергоэффективность.

Недостатками можно считать высокую стоимость и более сложный монтаж, большое количество материалов.

При установке радиаторов используются разные варианты подключения труб:

  • односторонний (боковой) – трубы заводятся с одной стороны, причем горячая вода подается в верхнюю часть радиатора, а холодная — выводится из нижней;
  • диагональный – трубы подключаются вверху (горячая вода) и внизу с разных сторон;
  • седельный – трубы подключаются внизу радиатора (расположены горизонтально), с разных сторон;
  • нижний – трубы присоединены снизу (установлены вертикально), и находятся рядом.

Седельный и нижний виды подключения отличаются невысокой энергоэффективностью. Так как горячая вода циркулирует внизу радиатора, а верхняя область прогревается слабо. Эта особенность приводит к потере энергоэффективности (примерно на 15%) и медленному прогреву комнаты.

Односторонний вид крепления труб обеспечивает равномерный нагрев батареи и отличается отличной теплоотдачей. Из-за особенности подключения линий, его целесообразно использовать в домах с малым количеством радиаторов (до 15 единиц).

Диагональную схему конструкции можно считать идеальным вариантом при обустройстве отопительной системы дома. Так как легко монтируется в домах любой площади и отличается высоким показателем теплопередачи (потери составляют около 2%).

Как правильно подключить радиатор отопления в квартире

В многоэтажных зданиях применяют два метода организации обогрева: однотрубный и двухтрубный. Именно они определяют вариант подключения отопительных приборов.

При однотрубном типе теплоноситель через вертикальную трубу перемещается к радиаторам, подключенным последовательно. В такой системе отсутствует труба для вывода отработанной воды. Конструкция отличается несложным монтажом и простым обслуживанием, экономичностью расхода материалов, поскольку нет нужды в перемычках, соединительных элементах и обратных стояках. Недостаток – разная степень обогрева квартир на верхних и нижних этажах. Иногда наблюдается отличие температуры воздуха даже в комнатах одной квартиры.

В квартирах батареи подключаются по двум схемам: последовательной и параллельной.

  1. При последовательном варианте батареи расположены непосредственно в системе. Отсутствует возможность регулирования температуры радиатора, а для ремонта отопительного прибора приходится отключать всю систему и сливать из нее воду. В квартирах с таким обустройством обогрева устанавливают чугунные и трубчатые приборы отопления.
  2. При параллельном способе батареи получают теплоноситель через трубу, подсоединенную к общему стояку. Таким же образом выводится остывшая вода. Установка шаровых кранов позволяет перекрывать движение теплоносителей и ремонтировать оборудование, не затрагивая соседей.

Основной недостаток – слабый прогрев батарей при понижении давления в сети. При таком варианте отопительной системы используют алюминиевые радиаторы и биметаллические.

Нет жестких требований по выбору типа подключения батареи. Диагональный вариант оптимально подходит для многосекционных моделей. Для систем, расположенных в полу, применяют нижнее подключение. Самым типичным и распространенным является боковое подключение батареи.

Шаг 2: Изготовление

Мне показалось, что он не подойдет, если подключать его сразу параллельно с родным аккумулятором, поэтому  собрав схему на купленном и подключил его к родному параллельно перед самой микросхемой (схема на рисунке).

Откинем микросхему и выведем наружу 2 контакта с помощью простых дорожек из консервной банки, которые просто зажмём под  микросхемой.

Дальше определим, где +, а где – с помощью мультиметра.

И так, + находится у нас на правом контакте. Значит, подключать аккумуляторы будем так:

Далее на крышке телефона крепим два контакта, что бы «+» был напротив «+», и аналогично «-«. На концах проводов  закрепим полоски от консервной банки. При закрытии крышки, контакты должны плотно смыкаться.

Закрепляем аккумулятор на обратной стороне так, чтобы он не перекрывал камеру.

Вот что получилось в результате:

Контакты на крышке  зафиксировал с помощью клеевого пистолета, но так, чтобы клей не мешал закрывать крышку.

Двигатель Гранта 8 клапанов: особенности мотора ВАЗ 21116

Параллельное соединение аккумуляторов

Конструктивной особенностью такого соединения является то, что все положительные клеммы соединяются в одни вывод, а отрицательные клеммы в другой вывод.

АКБ одинаковой емкости

Такое соединение позволяет добиться увеличения тока, напряжение при параллельном соединении остается неизменным. При этом значение емкости будет равно сумме всех элементов в системе. Благодаря этому способу соединения можно подавать питание на потребители повышенной мощности с большими пусковыми токами.

АКБ разной емкости

При использовании источников питания в батарее с различным значением напряжения общий вольтаж системы будет равен показанию самого сильного из элементов. Причем такое применение пагубно скажется на слабых изделиях, что приведет к преждевременному выходу из строя.

В результате параллельного соединения источников питания большой емкости и малым напряжением с изделиями малой емкости, но повышенном напряжении произойдет электрическое замыкание слабого элемента. Происходить такое явление за счет разности во внутреннем сопротивлении, при этом в аккумуляторе с меньшей емкостью будет протекать повышенный ток постепенно приводя к его разрушению.

Если же в системе присутствует источник высокой емкости и повышенного значения напряжения, то такое соединение в батарею приведет к перезаряду слабого источника питания. Производители рекомендуют перед подключением выравнивать значение напряжения, что позволит избежать возникновения неисправности в процессе эксплуатации.

Рекомендации по созданию аккумуляторных батарей

  • При последовательном и параллельном соединении все аккумуляторы должны быть одного типа, возраста и иметь одного производителя. Емкость аккумуляторов при последовательном подключении должна быть одинаковой, параллельно можно соединять между собой аккумуляторы разной емкости.
  • Если при последовательном подключении, один аккумулятор выходит из строя, в батарее необходимо менять все аккумуляторы. Если один аккумулятор выходит из строя при параллельном подключении, его удаляют, а оставшиеся используют до тех пор, пока они не выработают свой ресурс. После этого аккумуляторы заменяют.
  • Не увеличивайте емкость батареи с помощью аккумуляторов, установленных в другом помещении. Аккумуляторы, расположенные в разных местах, будут работать при различной температуре окружающего воздуха, а их разряд и зарядка будут происходить неравномерно. Это еще больше увеличит разницу температур и приведет к преждевременному старению и выходу батареи из строя. Если аккумуляторы заряжаются или разряжаются высоким током может произойти термический разгон и взрыв.
  • Если ток заряда или разряда аккумуляторов в течение продолжительного времени составляет 200 А при напряжении 12 В (100 А при 24 В), выделяется значительное количество тепла. Чтобы его рассеять, используйте принудительную вентиляцию. Для этого во входной воздушный патрубок батарейного отсека установите пожаробезопасный вентилятор. Вентилятор на входе уменьшает риск воспламенения водорода, выделяемого аккумуляторами. (Некоторые стандарты требуют принудительной вентиляции воздуха в любое время, когда аккумуляторы подключены к зарядному устройству с выходной мощностью более 2 кВт, то есть 167 ампер при 12 вольтах или 83 амперах при 24 вольтах).
  • Регулятор напряжения любого мощного зарядного устройства должен иметь датчик температуры, который уменьшает напряжение зарядки при нагреве аккумуляторов
  • Аккумуляторные батареи большой емкости с высоким током заряда и разряда устанавливают в жилых отсеках только в герметичных емкостях с вентиляцией, выведенной наружу.

Подсоединение дополнительного источника энергии к основному аккумулятору должно проводиться с учетом некоторых особенностей, которые позволяют повысить их эффективность и продлить срок эксплуатации. Правильное подключение позволяет после применения системы разъединить аккумуляторы и использовать их по отдельности. Основные рекомендации следующие:

  1. Оба источника энергии должны находиться в хорошем состоянии. Практически все аккумуляторы после нескольких циклов полной разрядки и зарядки изнашиваются, приходят в непригодность. Разрушение применяемых пластин становится причиной возникновения короткого замыкания, которое повреждает устройство в большей степени. Если использовать новый и изношенный аккумулятор, то второй будет поглощать энергию первого. После длительного применения подобной схемы разрядятся оба источника энергии.
  2. Большая часть схем предусматривает использование коммутатора для дополнительного аккумулятора. Подобный прибор позволяет использовать энергию первой батареи, но при этом сохранять емкость второго. Правильно подключенный коммутатор существенно расширяет возможности батареи.
  3. Если связка нескольких источников питания создается для транспортного средства или лодки, то нужно предусмотреть установку более производительного генератора. Не стоит забывать и о возрастающей нагрузке на применяемую проводку для передачи энергии. Малая мощность генератора может привести к тому, что созданная батарея не будет заряжаться полностью. Кроме этого, возрастает нагрузка на самозарядное устройство.
  4. Все применяемые батареи должны быть одинаковой мощности. Это связано с тем, что разная мощность приводит к износу одного из применяемых источников энергии.
  5. Между применяемыми батареями должно быть небольшое количество пространства. За счет использования коротких шнуров существенно повышается эффективность создаваемой схемы. Применяемые провода создают дополнительное сопротивление и приводят к потере энергии.
  6. Емкость используемых источников электроэнергии должна отличаться незначительно. Только в этом случае они смогут прослужить на протяжении длительного периода. Допустимое отклонение составляет всего 5 раз.

Зачем аккумуляторы соединять в батарею?

Смотреть галерею

Результат таких действий мы рассмотрели. А почему нам может понадобиться соединение аккумуляторов параллельно? Любые электрические системы или устройства несут омические потери, когда часть энергии превращается в тепло и при этом не происходит полезная работа. Это из-за невозможности получения коэффициента полезного действия 100%. При этом из курса школьной физики можно вспомнить, что чем больше напряжение, тем меньше ток при той же мощности и менее значительные омические потери. Таким образом, чем более высоковольтные аккумуляторы мы используем, тем лучший результат получим. Но даже с таким подходом не всегда может хватать емкости одной батареи. В таком случае можно заменить её на аккумулятор повышенной емкости. Но это не всегда удобно, и иногда проще просто поставить ещё один источник питания и использовать параллельное соединение аккумуляторов, чтобы они дольше поддерживали какую-то систему.

Зачем соединять аккумуляторы в аккумуляторную батарею?

В любых электрических системах или устройствах есть омические потери: часть электрической энергия превращается в тепло, не производя полезной работы. Чем больше напряжение электросистемы, тем (при той же мощности) меньше ток, меньше омические потери и меньше цена системы. Т.е. выгодно иметь электрические системы высокого напряжения. Причем, чем больше мощность системы, тем больше выигрыш высоковольтной системы по сравнению с низковольной. Поэтому в небольших UPS (на несколько сотен ВА) обычно стоит один аккумулятор на 12 вольт (так получается дешевле), в UPS на несколько кВА используется аккумуляторная батарея напряжением в десятки вольт, а в мощных ИБП на десятки киловатт напряжение аккумуляторной батареи может превышать 500 В.

Следовательно, цель использования аккумуляторных батарей с последовательным соединением аккумуляторов — уменьшение потерь и увеличение коэффициента полезного действия (КПД).

Иногда емкости одного аккумулятора недостаточно, и нужно увеличить емкость. Иногда удобнее не ставить взамен аккумулятор большей емкости, а поставить еще один такой же аккумулятора параллельно, чтобы суммарная емкость аккумуляторной батареи аккумуляторной батареи удвоилась.

Например, для увеличения времени работы высококлассного ИБП Eaton Powerware 9130 от аккумуляторной батареи параллельно существующей батарее подключают еще одну или несколько таких же аккумуляторных батарей.

Варианты подключения аккумуляторов

Для чего соединяют аккумуляторы

Ищем другие способы включения батарей

Упрощённая схема балансира для АКБ

   Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

   Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A — все они ведут себя одинаково.

   Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  •   R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Последовательное соединение

Если требуется увеличить напряжение батареи, надо подключить аккумуляторы последовательно, то есть объединить «плюс» каждого элемента с «минусом» другого. При последовательном соединении не оказывается влияния на емкость, а только на напряжение подключённой батареи. Например, два аккумулятора с напряжением 6 В и емкостью 7,2 Ач создадут одну батарею 12 В с той же емкостной величиной.

Важно! Последовательное подключение батарей позволяет генерировать более высокие общие напряжения. Недостатком такой конструкции является то, что самый слабый элемент батареи влияет на производительность серии

Неисправный аккумулятор приведет к сбою всей линии.

Вероятность отказа возрастает с количеством подключаемых элементов. Если одна из ячеек выходит из строя, это приводит к низкому напряжению.

Объединять в последовательную цепь можно аккумуляторы, имеющие идентичную емкость, так как они должны разряжаться синхронно во избежание глубокого разряда более слабых элементов.

Аккумуляторы, соединенные последовательно

Необходимо соблюдать определенные условия при заряде последовательно подключенных батарей:

  • идентичная емкость;
  • один уровень разряда;
  • общая конструкция.

Если аккумуляторы сильно различаются по названным параметрам, это может привести к  превышению предельного тока и напряжения заряда на отдельных элементах, что вызовет их повреждение.

Техника безопасности

  • используйте диэлектрические перчатки;
  • не прикасайтесь к клеммам голыми руками;
  • аккумуляторы должны быть отключены от нагрузок;
  • пользуйтесь инструментами с изолированными рукоятками;
  • проверьте клеммы и соединительные контакты перед подключением;
  • не используйте аккумуляторы с разными параметрами и степенью износа;
  • будьте внимательны с полярностью;
  • используйте подходящие провода для соединения;
  • изолируйте сборку от влаги

Ошибки коммутации и их последствия

Ошибки коммутации можно разделить на ошибки самого соединения (перепутали плюс и минус) и на неправильный выбор аккумуляторов и соединяющих проводов.

Заключение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector