Мгновенная и средняя скорость

Уровень B

1 . О какой скорости – средней или мгновенной – идет речь в следующих случаях:

а) пуля вылетает из винтовки со скоростью 800 м/с;

б) скорость движения Земли вокруг Солнца 30 км/с;

в) на участке дороги установлен ограничитель максимальной скорости – 60 км/ч;

г) мимо вас проехал автомобиль со скоростью 72 км/ч;

д) автобус преодолел расстояние между Могилевом и Минском со скоростью 50 км/ч?

2 . Путь в 63 км от одной станции до другой электропоезд проходит за 1 ч 10 мин со средней скоростью 70 км/ч. Какое время занимают остановки?

3 . Самоходная косилка имеет ширину захвата 10 м. Определите площадь поля, скошенного за 10 мин, если средняя скорость косилки 0,1 м/с.

4 . На горизонтальном участке пути автомобиль ехал со скоростью 72 км/ч в течение 10 мин, а затем проехал подъем со скоростью 36 км/ч за 20 мин. Чему равна средняя скорость на всем пути?

5 . Велосипедист первую половину времени при переезде из одного пункта в другой ехал со скоростью 12 км/ч, а вторую половину времени (из-за прокола шины) шел пешком со скоростью 4 км/ч. Определите среднюю скорость движения велосипедиста.

6 . Школьник проехал 1/3 всего времени на автобусе со скоростью 60 км/ч, еще 1/3 всего времени на велосипеде со скоростью 20 км/ч, остальное время прошел со скоростью 7 км/ч. Определите среднюю скорость движения школьника.

7 . Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью 12 км/ч, а вторую половину (из-за прокола шины) шел пешком со скоростью 4 км/ч. Определите среднюю скорость его движения.

8 . Из одного пункта в другой мотоциклист двигался со скоростью 60 км/ч, обратный путь им был пройден со скоростью 10 м/с. Определите среднюю скорость мотоциклиста за все время движения.

9 . Школьник проехал 1/3 пути на автобусе со скоростью 40 км/ч, еще 1/3 пути на велосипеде со скоростью 20 км/ч, последнюю треть пути прошел со скоростью 10 км/ч. Определите среднюю скорость движения школьника.

10 . Пешеход часть пути прошел со скоростью 3 км/ч, затратив на это 2/3 времени своего движения. Оставшееся время он прошел со скоростью 6 км/ч. Определите среднюю скорость.

11 . Скорость поезда на подъеме 30 км/ч, а на спуске – 90 км/ч. Определите среднюю скорость на вcем участке пути, если спуск в два раза длиннее подъема.

12 . Половину времени при переезде из одного пункта в другой автомобиль двигался с постоянной скоростью 60 км/ч. С какой постоянной скоростью он должен двигаться оставшееся время, если средняя скорость движения равна 65 км/ч?

Средней скоростью называется скорость, которая получается, если весь путь поделить на время, за которое объект преодолел этот путь. Формула средней скорости:

V ср = S/t.

  • S = S1 + S2 + S3 = v1*t1 + v2*t2 + v3*t3
  • V ср = S/t = (v1*t1 + v2*t2 + v3*t3) / (t1 + t2 + t3)

Чтобы не путаться с часами и минутами, переводим все минуты в часы: 15 мин. = 0,4 час, 36 мин. = 0,6 час. Подставляем числовые значения в последнюю формулу:

V ср = (20*0,4 + 0,5*6 + 0,6*15) / (0,4 + 0,5 + 0,6) = (8 + 3 + 9) / (0,4 + 0,5 + 0,6) = 20 / 1,5 = 13,3 км/час

Ответ: средняя скорость V ср = 13,3 км/час.

Среднее значение

Каждый из нас в жизни встречается с выражениями «в среднем», «средняя температура», «средний заработок». Что это значит?

Рассмотрим на конкретной задаче.

Три друга Иван, Костя и Владимир каждую среду идут вместе от школы до музыкальной студии, где учатся игре на гитаре. Иван от школы до студии насчитал 251 шаг. Костя – 248 шагов, а Владимир насчитал 254 шага. Сколько в среднем шагов от школы до музыкальной студии?

В математике существует понятие «среднее арифметическое». Чтобы найти среднее арифметическое в этой задаче, нужно сложить количество шагов трех друзей, а затем полученную сумму разделить на 3 (по количеству слагаемых).

251 + 248 + 254 = 753 шага.

753 : 3 = 251 шаг

Можно сказать, что от школы до музыкальной студии в среднем 251 шаг.

Составим алгоритм.

Например, найти среднее арифметическое чисел: 5, 8, 7, 4.

Находим сумму чисел 5 + 8 + 7 + 4 = 24

Количество слагаемых – 4, значит, полученную сумму разделим на 4.

24 : 4 = 6

Среднее арифметическое – 6.

Пользуясь алгоритмом, найдите среднее арифметическое чисел: 12, 10, 8.

Проверь себя.

12 + 10 + 8 = 30

30 : 3 = 10

Среднее арифметическое – 10.

Рассмотрим более сложную задачу на нахождение среднего арифметического.

Скорость в свободных условиях движения

В свободных условиях, когда дорога относительно пустая и вы можете выбирать скорость по своему усмотрению, казалось бы, все просто. Если следовать ПДД, то это 60 км/ч в городе, 80 км/ч на некоторых городских магистралях, 100 км/ч на МКАД, 90 км/ч за городом и 110 км/ч на магистрали. Ну и для любителей поиграть в кошки-мышки с законом, можно на эти значения набросить те самые «беспошлинные» 20 км/ч – ниже этого превышения штрафов нет. Но я сейчас не о штрафах, а о безопасности. Представим, что ограничений скорости нет, как, скажем на автобанах Германии. Значит, можно безнаказанно ехать с любой скоростью. А с какой скоростью ехать безопасно?

Безопасность = наличие резерва

Вспомним, что одно из условий совершения маневра – наличие запаса тяги. И что тяга двигателя – крутящий момент – зависит от показаний тахометра (см. статью «Безопасность вождения и крутящий момент двигателя»). Но способность двигателя разгонять машину зависит также и от скорости: чем ближе скорость движения автомобиля к максимальной, тем сложнее ускориться. Автомобиль хорошо ускоряется при небольших скоростях, и по мере приближения к максимальной скорости разгон происходит все медленнее. Кстати, еще несколько лет назад в технических характеристиках автомобилей BMW на сайте производителя приводилось два показателя времени разгона: для разгона от 0 до 100 км/ч и от 80 до 120 км/ч. Эти показатели были примерно равны между собой. То есть при разгоне с места автомобилю нужно столько же времени для ускорения на 100 км/ч, сколько при разгоне на большой скорости для ускорения всего на 40 км/ч. Чувствуете, к чему я клоню?

Даже если бы и была возможность хоть каждый день ездить на «максималке», все равно этого делать не стоит, потому что любое устройство, в том числе и двигатель, работая на максимуме, не имеет резерва.

Крейсерская скорость

Для сохранения запаса тяги двигателя необходимо ограничивать скорость движения и не приближаться к максимальному значению скорости. А насколько можно приближаться? Где граница? Оптимальная скорость составляет 60-70% от максимальной и называется крейсерской скоростью. Крейсерская скорость движения автомобиля – и есть та разумная граница, которую не стоит превышать, даже на свободных магистралях. То есть крейсерская скорость – максимальная безопасная скорость движения АВТОМОБИЛЯ.

Крейсерская скорость также является самой выгодной скоростью движения в плане соотношения времени в пути к расходу топлива, поэтому воздушные суда летают с крейсерской скоростью.

Перейду к конкретике. Например, для ВАЗ-2110 максимальная скорость по паспорту – 180 км/ч, а крейсерская скорость составляет 108 км/ч (60%). А если взять VW Touareg мощностью 240 л.с., то у него «максималка» по паспорту – 218 км/ч. И для него крейсерская скорость составит 130 км/ч. Не сильно больше, чем у «Лады», правда?

Таким образом, чтобы всегда иметь запас тяги мотора на случай экстренных действий и быть в безопасности, не превышайте крейсерскую скорость своей машины даже в свободных условиях движения. А поскольку максимальная разрешенная скорость в России – 130 км/ч, то нет и проблемы превышения крейсерской скорости 🙂 Так что соблюдайте правила, и все у вас будет в порядке!

Скорость в дальних поездках

Рекомендация ездить без торможений особенно актуальная для любителей езды «на дальняк». От тех, кто часто ездит из Москвы в Питер, в Крым я часто слышу истории про движение по магистралям со скоростями 150 км/ч и о том, что на некоторых участках приходится часто обгонять фуры. «А за сколько времени ты в итоге доехал из Москвы до Питера?» — спрашиваю я. «За 10 часов» — отвечает лихач. Вот тут собака-то и зарыта…

Понятие равномерности движения

Смотрите, от Москвы до Питера около 700 км. Если водитель ехал без длительных остановок 10 часов, значит, его средняя скорость составила 700/10 = 70 км/ч. Выходит, на пустых участках он гнал 150 км/ч, чтобы приехать со средней скоростью 70??? Стоила ли игра свеч? Уже невооруженным глазом видно, что не стоила и что со скоростью был явный перебор. Я не говорю даже о нарушении ПДД, я пока только борюсь за здравый смысл. А если посмотреть на ситуацию не просто невооруженным глазом, а оценить по-научному, то существует так называемый коэффициент равномерности движения:

K = Vcp/Vmax

где Vcp – средняя скорость в пути, а Vmax – максимальная скорость, которой придерживался в пути водитель.

Чем ближе коэффициент к единице, тем более равномерно и целесообразно движение. То есть чем ближе средняя скорость к максимальной, тем равномернее движение и целесообразнее выбранная скорость.

В нашем примере с Москвой и Питером коэффициент равномерности равен 70/150 = 0,47. Очень посредственный результат, прямо скажем. В свободных условиях движения, за городом, рекомендуемые значения коэффициента равномерности – выше 0,7. Понятно, что ровно 1 не бывает, но 0,9-0,95 на свободной дороге без светофоров запросто. В городе уже можно говорить про 0,4-0,5, но не на Питерской трассе.

Равномерность движения важнее скорости

То есть в нашем примере водителю не стоило гнать 150, чтобы доехать со средней скоростью 70. Было целесообразно снизить скорость. Многие думают, что снижение максимальной скорости приведет к такому же снижению средней. Например, если ехать не 150, а на 30 км/ч медленнее — 120, то средняя в итоге окажется не 70, а 40. Это заблуждение! В нашем примере средняя никак не изменится, в том-то и секрет! Если стараться ехать равномерно,  на практике средняя скорость оказывается лишь незначительно ниже максимальной. В нашем случае, средняя скорость 70 км/ч будет, я думаю, если пытаться держать всю дорогу 80 км/ч. Чувствуете разницу? Гнать 150 или спокойно держать 80 и приехать за одно и то же время! На практике так и будет. Фишка в том, что 150 всю дорогу держать не получается. Пока едешь в Питер, встречаются населенные пункты, посты ДПС, фуры, опасные участки дороги – и все это вынуждает снижать скорость. А в случае с фурами, бывает, попадешь в «караван» и приходится обгонять их по очереди по нескольку десятков штук, причем, долго тащиться за каждой из них. В этих-то местах мы и теряем все то, что выиграли, выжимая по 150 на каждом свободном участке. Поэтому не стоит избыточно тратить усилия и топливо, нужно ехать с той скоростью, которая приведет к равномерности движения. Поверьте, средняя скорость никак не пострадает, а вот топлива, сил и нервов сэкономите много, и комфорта с безопасностью добавите.

Равномерно — когда нет торможений

Как же определить эту оптимальную «равномерную» скорость? Ведь это надо сидеть, считать среднюю, делить на максимальную, эти коэффициенты… Замучаешься! Да нет, на практике все куда проще и уже не ново. Нужно ехать с максимально возможной скоростью, при которой у вас не будет торможений. Тогда и движение станет равномерным, а скорость близкой к средней. То есть если вы попали в караван из 20 фур, которые идут 80 км/ч и которые можно обогнать только по «встречке», где навстречу постоянно едут машины, не стоит их обгонять. Нужно смириться и следовать за фурой. Или, как вариант, можно сделать ранее запланированную остановку (заправиться, отдохнуть, поесть) и отпустить караван вперед, чтобы потом ехать по более свободной дороге. Потеряете совсем чуть-чуть во времени, если потеряете, а выиграете, повторюсь, в расходе топлива, силах, комфорте, безопасности. И снова мы приходим к целесообразности движения со скоростью потока, только уже через другие размышления 🙂

Движение по кольцевым трассам

      Задача 6. (www.reshuege.ru) Из пункта   A   круговой трассы длиной   46   км выехал велосипедист, а через   20   минут из пункта   A   следом за велосипедистом отправился мотоциклист. Через   5   минут после отправления мотоциклист догнал велосипедиста в первый раз, а еще через   46   минут после этого мотоциклист догнал велосипедиста во второй раз. Найдите скорости велосипедиста и мотоциклиста.

      Решение. К тому моменту, когда мотоциклист в первый раз догнал велосипедиста, мотоциклист ехал   5   минут, а велосипедист ехал   25   минут, причем проехали они один и тот же путь. Отсюда вытекает, что скорость мотоциклиста в   5   раз больше скорости велосипедиста.

      Таким образом, обозначив буквой   v   (км/час) скорость велосипедиста, получаем, что скорость мотоциклиста равна   5v   (км/час).

      В условии задачи дано время, прошедшее между двумя последовательными встречами мотоциклиста и велосипедиста, –   46   минут. Это время необходимо выразить в часах, чтобы все единицы измерения были согласованными:

      Изобразим данные задачи, касающиеся движения мотоциклиста и велосипедиста между первой и второй встречами, на рисунке 6.

Рис. 6

      Поскольку за время часа, прошедшее от момента первой встречи до момента второй встречи, мотоциклист проехал   46   км (вся круговая трасса) плюс путь, который проехал велосипедист за часа, то можно составить следующее уравнение:

      Решая это уравнение, находим скорость велосипедиста:

v = 15 .

      Ответ. Скорость велосипедиста   15   км/час, скорость мотоциклиста   75   км/час.

      Задача 7. На дороге, представляющей собой окружность длиной   60   км, пункты   A   и   B   являются диаметрально противоположными точками. Велосипедист выехал из пункта   A   и сделал два круга. Первый круг он прошел с постоянной скоростью, после чего уменьшил скорость на   5   км/час. Время между двумя прохождениями велосипедиста через пункт   B   равно   5   часам. Найти скорость, с которой велосипедист прошел первый круг.

      Решение. Для определенности будем считать, что велосипедист двигался по кругу по часовой стрелке и рассмотрим рисунок 7.

Рис. 7

      Если обозначить буквой   v   (км/час) скорость, с которой велосипедист прошел первый круг, то скорость велосипедиста на втором круге будет равна   v – 5   (км/час), и можно составить уравнение

      Решая это уравнение, находим скорость велосипедиста на первом круге:

      Поскольку скорость велосипедиста на первом круге больше, чем   5   км/час, то первый корень должен быть отброшен.

      Ответ.   15   км/час.

      Желающие ознакомиться с примерами решения различных задач по теме «Проценты» и применением процентов в экономике и финансовой математике могут посмотреть разделы нашего справочника «Проценты. Решение задач на проценты», «Простые и сложные проценты. Предоставление кредитов на основе процентной ставки», а также наши учебные пособия «Задачи на проценты» и «Финансовая математика».

      Приемы, используемые для решения задач на выполнение работ представлены в разделе нашего справочника «Задачи на выполнение работ».

      С примерами решения задач на смеси, сплавы и растворы можно ознакомиться в разделе нашего справочника «Задачи на смеси, сплавы и растворы».

Определение и формула скорости

Определение

Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора
$\bar{r}$ точки по времени (t). Обозначают скорость обычно буквой v.
Это векторная величина. Математически определение вектора мгновенной скорости записывается как:

$$\bar{v}=\frac{d \bar{r}}{d t}=\dot{\bar{r}}(1)$$

Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения.
Модуль скорости можно определить как первую производную от длины пути (s) по времени:

Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.

Скорость тела. Средняя скорость тела

      Решение задач на движение опирается на хорошо известную из курса физики формулу

позволяющую найти путь   S ,   пройденный за время   t   телом, движущимся с постоянной скоростью   v .

      Сразу же сделаем важное

      Замечание 1. Единицы измерения величин   S ,   t   и   v   должны быть согласованными. Например, если путь измеряется в километрах, а время – в часах, то скорость должна измеряться в км/час.

      В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости, которая вычисляется по формуле

(1)

      Например, если тело в течение времени   t1   двигалось со скоростью   v1 ,  в течение времени   t2   двигалось со скоростью   v2 ,  в течение времени   t3   двигалось со скоростью   v3 ,  то средняя скорость

(2)

      Задача 1. По расписанию междугородный автобус должен проходить путь в   100   километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на   25   минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на   20   км/час. Какова скорость автобуса по расписанию?

      Решение. Обозначим буквой   v   скорость автобуса по расписанию и будем считать, что скорость   v   измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

Рис. 1

      Тогда

      – время движения автобуса по расписанию (в часах);

      – время, за которое автобус проехал первую половину пути (в часах);

      v + 20   – скорость автобуса во второй половине пути (в км/час);

      – время, за которое автобус проехал вторую половину пути (в часах).

      В условии задачи дано время остановки автобуса –   25   минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

      Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

      Решим это уравнение:

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   40   км/час.

      Задача 2. (МИОО) Первый час автомобиль ехал со скоростью   120   км/час, следующие три часа – со скоростью   105   км/час, а затем три часа – со скоростью   65   км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

      Решение. Воспользовавшись , получаем

      Ответ.   90   км/час.

      Задача 3. Первую половину пути поезд шел со скоростью   40   км/час, а вторую половину пути – со скоростью   60   км/час. Найдите среднюю скорость поезда на протяжении всего пути.

      Решение. Обозначим буквой   S   длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

Рис. 2

      Тогда

      – время, за которое поезд прошел первую половину пути, выраженное в часах;

      – время, за которое поезд прошел вторую половину пути, выраженное в часах.

      Следовательно, время, за которое поезд прошел весь путь, равно

      В соответствии с средняя скорость поезда на протяжении всего пути

      Ответ.   48   км/час.

      Замечание 2. Средняя скорость поезда в задаче 3 равна   48   км/час, а не   50   км/час, как иногда ошибочно полагают, вычисляя чисел (скоростей)   40   км/час и   60   км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по .

Формулы для нахождения линейной скорости

Тело движется равномерно тогда, когда его скорость характеризуется постоянной величиной. Формула для расчета скорости такого движения будет иметь следующий вид:

V = st

где s является пройденным путем, то есть длиной линии;

t представляет собой время, в течение которого тело преодолевало указанный путь.

Определение

Линейной скоростью V называют физическую величину, которая демонстрирует путь, пройденный телом в течение определенного времени.

Основной формулой для определения линейной скорости является следующее равенство:

V = St

где S является путем,

t обозначает время, в течение которого тело преодолело путь S.

Иной вариант уравнения имеет такой вид:

V = lt

где l является путем,

t обозначает время, в течение которого тело преодолело дугу l.

В некоторых научных источниках скорость обозначают с помощью маленькой буквы v. Другим уравнением для расчета линейной скорости является равенство:

\(v=2\pi RT\)

В данном случае 2π представляет собой полную окружность и составляет 360 угловых градусов. Вектор скорости направлен по касательной к траектории движении тела.

Формула скорости математика 4 класс

С какой скоростью черепах ползла после камня, если она проползла 33 см?

3. Поезд шёл до станции 7 ч со скоростью 63 км/ч, а после станции поезд проехал ещё 4 ч. С какой скоростью поезд проедет путь от станции, если всего он прошёл 741 км?

Составные задачи на расстояние.

Образец:

Травоядный динозавр сначала бежал 3 ч со скоростью 6 км/ч, а потом он бежал ещё 4 ч со скоростью 5 км/ч. Какое расстояние пробежал травоядный динозавр?

Рассуждаем так. Это задача в одном направлении.

Составим таблицу.

Слова « скорость », «время», «расстояние» запишем зеленой ручкой.

Скорость (V) Время (t) Расстояние (S)

С. — 6 км/ч Зч? км

П. — 5 км/ч 4ч?км? км

Составим план решения этой задачи. Чтобы узнать какое расстояние пробежал динозавр, надо знать, какое расстояние он пробежал, потом и какое расстояние он пробежал сначала.

S Sп Sс

Чтобы найти расстояние, надо скорость умножить на время.

Sс =Vс t с

6· 3 = 18 (км) — расстояние, которое про­бежал динозавр сначала. Чтобы найти расстояние, надо скорость умножить на время.

Sп = Vп tп

5 4 = 20 (км) — расстояние, которое про­бежал динозавр потом.

18 + 20 = 38 (км)

Составим выражение:6 3 + 5 4 = 38(км)

Ответ: 38 км пробежал травоядный динозавр.

Реши задачу.

1. Ракета сначала летела 28 с со скоростью 15 км/с, а оставшийся путь летела 53 с со скоростью 16 км/с. Какое расстояние проле­тела ракета?

2. Утка сначала плыла 3 ч со, скоростью 19 км/ч, а потом она плыла ещё 2 ч со скоро­стью 17 км/ч. Какое расстояние проплыла утка?

3. Кит полосатик сначала плыл 2 ч со скорос­тью 22 км/ч, а потом он плыл ещё 2 ч со ско­ростью 43 км/ч. Какое расстояние проплыл кит полосатик?

4. Теплоход до пристани шёл 3 ч со скоростью 28 км/ч, а после пристани плыл ещё 2 ч со скоростью 32 км/ч. Какое расстояние про­плыл теплоход?

Задачи на нахождение времени совместной работы.

Образец:

Привезли 240 саженцев елей. Первый лесник может посадить эти ели за 4 дня, а второй за 12 дней. За сколько дней оба лесника могут выполнить задание, рабо­тая вместе?

240: 4 = 60 (саж,) за 1 день сажает пер­вый лесник.

240: 12 — 20 (саж.) за 1 день сажает вто­рой лесник.

60 + 20 = 80 (саж.) за 1 день сажают оба лесника. 240:80 = 3(дн.)

Ответ: за 3 дня лесники посадят сажен­цы, работая вместе.

Реши задачу.

1. В мастерской 140 мониторов. Один мастер отремонтирует их за 70 дней, а другой, за 28 дней. За сколько дней оба мастера отре­монтируют эти мониторы, если будут рабо­тать вместе?

2. Было 600 кг горючего. Один трактор израсходовал его за 6 дней, а другой – за 3 дня. За сколько дней тракторы израсходуют это горючее, работая вместе?

3. Надо перевезти 150 пассажиров. Один катер перевезёт их за 15 рейсов, а другой за 10 рейсов. За сколько рейсов эти катера перевезу всех пассажиров, работая вместе?

4. Один ученик может сделать 120 снежинок 60 мин, а другой — за 30 мин. Сколько потребуется времени ученикам, если они будут работать вместе?

5. Один мастер может изготовить 90 шайбочек за 30 мин, другой—‘за 15 мин. За какое вре­мя они изготовят 90 шайбочек при совмест­ной работе?

⇐ Предыдущая234567891011

Задачи на движение

С задачами на движение мы встречаемся каждый день в обычной жизни.

Расстояние – самое большое из трех величин в задачах на движение. То есть, скорость и время всегда меньше расстояния.

Запомнили формулы, которые являются ключами к правильному решению задач?

Заполните пустые окошки в формулах:

Решим задачи на движение.

Плот двигался по реке со скоростью 5 км/ч, а катер – со скоростью 20 км/ч. Какое расстояние преодолеет плот, и какое катер за 3 часа?

Выделяем величины, чертим таблицу. Читаем задачу по частям и записываем каждую величину в нужную ячейку таблицы.

Какую из трех величин нужно найти? Верно, расстояние. Вспомним формулу: S = v ∙ t

5 ∙ 3 + 15 (км) – пройдет плот.

20 ∙ 3 = 60 (км) – пройдет катер.

Ответ: 15 км, 60 км.

Ребята участвовали в соревнованиях по бегу. Максим пробежал 200 м за 40 с, а Артем это же расстояние пробежал за 50 с. С какой скоростью бежал каждый из мальчиков?

Начертите  таблицу, как в предыдущей задаче. Запишите величины в нужные ячейки. Поставьте знак вопроса. Пользуясь формулой, решите задачу самостоятельно.

Проверь себя.

v = S t

200 : 40 = 5 (м/с) – скорость движения Максима.

200 : 5 = 4 (м/с) – скорость движения Артема.

Ответ: 5 м/с, 4 м/с.

Решим еще одну задачу.

Два всадника отправились на прогулку на лошадях Рада и Снежка. Лошади преодолели одинаковое расстояние 30 км. Но двигались с разной скоростью. Рада бежала со скоростью 10 км/ч, а Снежка – 15 км/ч. Сколько времени длилась прогулка на Раде, и сколько времени – на Снежке?

Начертите таблицу, заполните ее ячейки. Пользуясь формулой, запишите решение.

Проверь себя.

t = S : v

30 : 10 = 3 (ч) – прогулка на Раде.

30 : 15 = 2 (ч) – прогулка на Снежке.

Ответ: 3 ч, 2 ч.

Сегодня на уроке мы запомнили формулы-ключи для решения задач на движение, узнали о скорости самых медленных и самых быстрых животных, научились находить среднее арифметическое. До скорых встреч, ребята!

Способы вычисления расстояния и времени

Можно и наоборот, зная скорость, найти значение расстояния или времени. Например:

S=v*t, где v — понятно что такое,

S — расстояние, которое требуется найти,

t — время, за которое объект прошел это расстояние.

Таким образом вычисляется значение расстояния.

Или вычисляем значение времени, за которое пройдено расстояние:

t=S/v, где v — все та же скорость,

S — расстояние, пройденный путь,

t — время, значение которого в данном случае нужно найти.

Для нахождения средних значений этих параметров существует довольно много представлений как данной формулы, так и всех остальных. Главное, знать основные правила перестановок и вычислений. А еще главнее знать сами формулы и лучше наизусть. Если же запомнить не получается, тогда лучше записывать. Это поможет, не сомневайтесь.

Пользуясь такими перестановками можно с легкостью найти время, расстояние и другие параметры, используя нужные, правильные способы их вычисления.

И это еще не предел!

Алгоритм на все случаи жизни

Для того чтобы наверняка избежать ошибки, при решении вопроса, как найти среднюю скорость, достаточно запомнить и выполнить простую последовательность действий:

  • определить весь путь, просуммировав длины отдельных его участков;
  • установить всё время пути;
  • поделить первый результат на второй, неизвестные, не заданные в задаче величины при этом (при условии корректной формулировки условий) сокращаются.

В статье рассмотрены простейшие случаи, когда исходные данные приводятся для равных долей времени или равных участков пути. В общем случае соотношение хронологических промежутков либо пройденных телом расстояний может быть самым произвольным (но при этом математически определённым, выраженным конкретным целым числом или дробью). Правило обращения к соотношению v ср = S: t абсолютно универсально и никогда не подводит, сколь бы сложные на первый взгляд алгебраические преобразования ни приходилось выполнять.

Напоследок отметим: для наблюдательных читателей не осталась незамеченной практическая значимость использования верного алгоритма. Правильно рассчитанная средняя скорость в приведённых примерах оказалась несколько ниже «средней температуры» на трассе. Поэтому ложный алгоритм для систем, фиксирующих превышения скорости, означал бы большее число ошибочных постановлений ГИБДД, высылаемых в «письмах счастья» водителям.

Средней скоростью называется скорость, которая получается, если весь путь поделить на время, за которое объект преодолел этот путь. Формула средней скорости:

V ср = S/t.

  • S = S1 + S2 + S3 = v1*t1 + v2*t2 + v3*t3
  • V ср = S/t = (v1*t1 + v2*t2 + v3*t3) / (t1 + t2 + t3)

Чтобы не путаться с часами и минутами, переводим все минуты в часы: 15 мин. = 0,4 час, 36 мин. = 0,6 час. Подставляем числовые значения в последнюю формулу:

V ср = (20*0,4 + 0,5*6 + 0,6*15) / (0,4 + 0,5 + 0,6) = (8 + 3 + 9) / (0,4 + 0,5 + 0,6) = 20 / 1,5 = 13,3 км/час

Ответ: средняя скорость V ср = 13,3 км/час.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) = x0 + v0xt + axt^2/2

x(t) — искомая координата
x0 — начальная координата
v0x — начальная скорость тела в данный момент времени [м/с]
t — время
ax — ускорение [м/с^2]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

→          → v = v0 + at


v — конечная скорость тела [м/с]
v0 — начальная скорость тела [м/с]
t — время

a — ускорение [м/с^2]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

v = v0 + at
a = v — v0 / t

Так как автобус двигался с места, v0 = 0. Значит
a = v/t

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч^2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt^2/2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

x(t) = axt^2/2

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
x = 1200*0,5^2/2 = 1200*0,522= 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Сушка двигателя на газу: вымысел или реальность

Средняя скорость равномерного движения

Только при равномерном движении средняя скорость является постоянной величиной и не зависит от выбора промежутка времени, в который движется тело. При равномерном движении материальной точки по оси X кинематические уравнения для перемещения запишем как:

Тогда:

Найдем среднюю скорость движения, используя определение (3) и выражения (6):

Для оценки численной величины средней скорости на практике используют следующее определение $\left\langle v\right\rangle $: средняя скорость равна отношению пройдённого пути (s) ко времени (t), которое было затрачено на движение:

Определяемая таким образом средняя скорость является скалярной величиной.

Задачи с примерами решения

Задача №1

Тело совершает движение по окружности с ускорением 3 м/с в квадрате. Радиус окружности равен 40 метров. Необходимо определить линейную скорость движения тела.

Решение:

Ускорение в данном случае будет нормальным. Исходя из этого, определить линейную скорость тела можно с помощью формулы:

\(a=\frac{v^{2}}{R}\)

\(v=\sqrt{aR}=\sqrt{40\times 3}=10.9\) м/с

Ответ: линейная скорость равна 10,9 м/с.

Задача №2

Поезд совершает равномерное движение. В течение 4 часов он преодолевает путь в 219 километров. Требуется рассчитать скорость движения поезда.

Решение:

Исходя из основной формулы для расчета линейной скорости, получим:

\(v=\frac{S}{t}=\frac{219}{4}=54.75\) км/ч

Ответ: скорость движения поезда составит 54.75 км/ч или 15.2 м/с.

Задача №3

Транспортное средство, работая на двигателе внутреннего сгорания, в течение 2,5 часов преодолевает расстояние в 213 километров. Требуется определить скорость движения транспорта.

Решение:

С помощью уравнения расчета скорости можно записать решение задачи:

\(v=\frac{S}{t}=\frac{213}{2,5}=85.2\) км/ч

Интерьер

Как рассчитать полное время остановки и итоговый тормозной путь?

Как мы уже сказали, чтобы рассчитать весь тормозной путь, нужно учитывать потерю времени при принятии водителем решения о торможении (то есть время реакции водителя). Для этого нужно использовать другую формулу, которая обеспечивает более точный приблизительный расчет тормозного расстояния, которое проедет автомобиль в момент принятия решения о необходимости остановки. Вот эта формула:

(Скорость в км/ч : 10) x 3 = путь реакции в метрах

В итоге, сделав вычисление по вышеуказанным формулам, вы можете вычислить приблизительный итоговый тормозной путь вашего автомобиля при любой скорости движения. Вот пример. Если вы управляете своим автомобилем со скоростью 50 км/ч, то с помощью приведенных формул вычислите следующие значения:

Тормозной путь при принятии решения о торможении на этой скорости (реакция на дорожную ситуацию + принятие решения о торможении + время, необходимое для перемещения ноги с педали газа на педаль тормоза, а также время отклика тормозной системы на нажатую педаль тормоза) составит где-то (50/10) х 3 = 15 метров. То есть пока вы будете принимать решение о торможении при скорости в 50 км/ч, ваша машина проедет 15 метров. 

Тормозной путь при нормальном торможении (с момента нажатия педали тормоза до момента остановки машины) составит около (50/10) х (50/10) = 25 метров. 

При экстренном торможении тормозной путь, как мы уже отметили, сокращается примерно в два раза. Соответственно, расчет тормозного расстояния автомобиля, который движется со скоростью 50 км/ч, будет выглядеть следующим образом: (50/10) x (50/10) / 2 = 12,5 метров.

В результате теперь мы можем вычислить реальный итоговый тормозной путь автомобиля. Так, при нормальном (не резком, а обычном) торможении итоговый тормозной путь составит около 40 метров. При экстренном торможении – не менее 28 метров. 

Примечание: Обратите внимание, что если скорость автомобиля будет выше всего в два раза, его итоговый тормозной путь увеличится в четыре раза!!!

То есть мнение о том, что при увеличении скорости автомобиля в два раза тормозной путь увеличивается только в два раза, – это чистый воды миф среди многих автолюбителей. Так что имейте это в виду, когда садитесь за руль. Самое удивительное, что об этом не знают даже многие опытные водители. 

Пример расчета тормозных и остановочных расстояний

Скорость, в км / ч

Путь, пройденный автомобилем

во время реакции водителя, в метрах

Тормозное расстояние, в метрах

(с момента нажатия педали тормоза

до полной остановки машины)

Итоговый тормозной путь, в метрах

25

7,5

6,25

13,75

50

15

25

40

100

30

100

130

150

45

225

265

200

60

400

460

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector